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Alcohol, nicotine, and cannabis are among the most commonly used drugs. A prolonged and combined use of these substances can alter
normal brain wiring in different ways depending on the consumed cocktail mixture. Brain connectivity alterations and their change with
time can be assessed using functional magnetic resonance imaging (fMRI) because of its spatial and temporal content. Here, we estimated
dynamic functional network connectivity (dFNC) as derived from fMRI data to investigate the effects of single or combined use of alcohol,
nicotine, and cannabis. Data from 534 samples were grouped according to their substance use combination as controls (CTR), smokers
(SMK), drinkers (DRN), smoking-and-drinking subjects (SAD), marijuana users (MAR), smoking-and-marijuana users (SAM), marijuana-and-
drinking users (MAD), and users of all three substances (ALL). The DRN group tends to exhibit decreased connectivity mainly in areas of
sensorial and motor control, a result supported by the dFNC outcome and the alcohol use disorder identification test. This trend
dominated the SAD group and in a weaker manner MAD and ALL. Nicotine consumers were characterized by an increment of
connectivity between dorsal striatum and sensorimotor areas. Where possible, common and separate effects were identified and
characterized by the analysis of dFNC data. Results also suggest that a combination of cannabis and nicotine have more contrasting effects
on the brain than a single use of any of these substances. On the other hand, marijuana and alcohol might follow an additive effect trend.
We concluded that all of the substances have an impact on brain connectivity, but the effect differs depending on the dFNC state analyzed.
Neuropsychopharmacology (2018) 43, 877–890; doi:10.1038/npp.2017.280; published online 20 December 2017
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INTRODUCTION

The 2014 global drug survey indicates that alcohol, nicotine,
and cannabis are the three most used drugs (Winstock,
2014). Prolonged use of these substances may end in
addiction, a disease surrounded by behavioral and social-
context aspects influenced by biological changes in the brain
(Doyon et al, 2013; Leshner, 1997; Volkow et al, 2014).
Several theories have emerged as an attempt to explain the
underlying mechanism of addiction. One of these views is
the anhedonia hypothesis that the subjective pleasure
induced by dopamine concentrations in the brain plays a
critical role in reinforcement, motivation, and reward (Wise,
2008,2010). Although drugs of abuse alter dopamine
concentrations in limbic brain regions, these dopaminergic
alterations are not sufficient to explain the whole process of
addiction (Goldstein and Volkow, 2002). For example,
transitioning from voluntary to habitual drug use may be a
consequence of impaired brain areas involved in executive
control over behavioral inhibition processes (Everitt and
Robbins, 2005; Goldstein and Volkow, 2002). Furthermore,

alterations in the mesolimbic dopamine system caused by
addictive substances may be the starting point of a series of
neuroadaptations that produces changes in a neurocircuitry
composed of the prefrontal cortex, cingulate, amygdala,
insula, and the striatum (Koob and Volkow, 2010). These
observations promote an increasing interest in characterizing
interactions among components of the proposed neurocir-
cuitry along with the impact it might have in other brain
areas. The emergence of neuroimaging technologies facil-
itates the study of these interactions by providing informa-
tion regarding connections among brain areas. Brain
connectivity allows for the study of an important aspect
based on brain circuitry and provides additional ways to look
at the complex mechanism of addiction (Pariyadath et al,
2016; Sutherland et al, 2012).
Substances of abuse act as modifiers of the dopamine-

reward systems that affect the nucleus accumbens (NAc) and
ventral tegmental area (VTA), but through different
molecular mechanisms (Nestler, 2005). Pertinent literature
suggests that these differences translate into diverse effects in
functional connectivity. Alcohol produces dysfunctions in
connectivity between the NAc and other cortical areas,
including those with increased activation during stimuli and
response demanding tasks (Camchong et al, 2013c). Changes
in the functional connectivity of cognitive, motor, and
coordination brain areas have also been linked to alcohol use
(Camchong et al, 2013b; Chanraud et al, 2011). Nicotine
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binding to nicotinic acetylcholine receptors (nAChR)
changes dopaminergic signaling in the areas of the reward
pathway such as VTA and NAc (Subramaniyan and Dani,
2015). However, the effect of nicotine in functional
connectivity is more prominent in areas like the insula
(Sutherland et al, 2012). Furthermore, nicotine administra-
tion might increase functional connectivity in motor,
attention, and memory brain areas (Jasinska et al, 2014). In
addition to the reward system, cannabis also produces
alterations of functional connectivity that include the
orbitofrontal cortex (Filbey et al, 2014), default mode
network, and insula (Pujol et al, 2014). Evidence supports
the idea that combined substance use has different
effects from that of single substance use. The use of
both nicotine and marijuana enhances nAChR availability
in the prefrontal cortex and the thalamus to a higher degree
than single substance use (Brody et al, 2016). Reports
indicate that combined use can also increase connectivity
disruptions in posterior cortical and frontoparietal regions
(Jacobsen et al, 2007). Combined alcohol and nicotine
consumption also produces neurologic consequences differ-
ent from single substance use (Meyerhoff et al, 2006). One
important effect is that alcohol consumers are sensitive to the
cognitive enhancement effects of nicotine (Ceballos et al,
2006).
This work utilizes dynamic functional network connectiv-

ity (dFNC) and multivariate approaches to investigate the
different effects of alcohol, nicotine, and/or cannabis. In
dFNC, connectivity is estimated at relatively short time
lengths. A small set of connectivity patterns, termed dFNC
states, appear successively through time (Allen et al, 2014).
Because of its fine time resolution, a dFNC analysis results in
a high dimensional data set. Given the large amount of dFNC
variables influenced by substance comorbidity and important
confounding problems (Meyerhoff et al, 2006), we selected a
multivariate approach as appropriate for dFNC data and
poly-substance studies (Richmond-Rakerd et al, 2016).
Although the nature of this dFNC study is mainly
exploratory, we expect to find previously unobserved effects
or confirmatory evidence for outcomes formerly observed in
functional connectivity. We also expect a disentanglement of
comorbid effects as aided by the fine timescale in dFNC
analysis.

MATERIALS AND METHODS

Subjects

The sample cohort included 534 subjects (195 females)
between the ages of 18 and 55 (33.2± 9.7) years. Subject
exclusion criteria included injury to the brain, brain-related
medical problems, and bipolar or psychotic disorders. A
urinalysis test confirmed or rejected the use of drugs
including marijuana. The severity of alcohol use was assessed
by applying the Alcohol Use Disorder Identification Test
(AUDIT) (Saunders et al, 1993). AUDIT scores up to seven
suggested abstinence and AUDIT scores eight or larger
characterized drinking status (Vergara et al, 2017b; Weiland
et al, 2014). Nicotine dependence levels were assessed using
the Fagerstrom Tolerance Questionnaire (FTQ) (Fagerström,
1978). Smoking was avoided 3 h before scanning. Subjects
with FTQ scores of ⩾ 7 were cataloged as smokers (Moore

et al, 1987). Measurements of timeline follow-back (TLFB)
approach determined the level of marijuana use (60TLFB
Marijuana Days). A 60TLFB of ⩾ 15 days defined marijuana
use status. The combinations of thresholded substance use
and dependence scores were used to define eight subject
groups: controls (CTR), smoking (SMK), drinking (DRN),
smoking-and-drinking (SAD), marijuana (MAR),
marijuana-and-drinking (MAD), smoking-and-marijuana
(SAM), and users of all three substances (ALL). The CTR
group did not include AUDIT scores, but did not show
alcohol abuse/dependence as assessed using the Structured
Clinical Interview for DSM-IV-TR Axis I Disorders,
Research Version, Patient Edition (SCID-I/P) (First et al,
2002). All control subjects reported no use of nicotine or
marijuana. Other relevant data collected included the Beck
Depression Inventory (BDI) (Beck et al, 1988), the Beck
Anxiety Inventory (Leyfer et al, 2006), the Impulsive
Sensation Seeking Scale (ImpSS) (Zuckerman, 1996), and
income was used as a socioeconomic status variable. Income
was categorized in 7 levels: 1: $0–$9999/year, 2: $10 000–
$19 999/year, 3: $20 000–$29 999/year, 4: $30 000–$39 999/
year, 5: $40 000–$49 999/year, 6: $50 000–$59 999/year, and
7: 4$60,000/year. Table 1 shows detailed information about
the eight groups.

MRI Data

Data were collected on a 3T Siemens TIM Trio (Erlangen,
Germany) scanner. Echo-planar EPI sequence images
(TR= 2000 ms, TE= 29 ms, flip angle= 75°) were acquired
with an 8-channel head coil. Volumes consisted of 33 axial
slices (64 × 64 matrix, 3.75 × 3.75 mm2, 3.5 mm thickness,
1 mm gap). Data were preprocessed using the statistical
parametric mapping software (SPM; http://www.fil.ion.ucl.
ac.uk/spm) (Friston, 2003), including slice-timing correction,
realignment, co-registration, spatial normalization, and
transformation to the Montreal Neurological Institute
(MNI) standard space. Realignment parameters were re-
gressed out of the functional magnetic resonance imaging
(fMRI) data and then smoothed using a FWHM Gaussian
kernel of size 6 mm. Group ICA (Calhoun et al, 2001;
Calhoun and Adali, 2012), available through the Group ICA
fMRI Toolbox (GIFT; http://mialab.mrn.org/software/gift/),
was then applied to obtain a set of 100 independent
components. A total of 39 out of the 100 estimated
components were selected based on frequency content and
visual inspection (Allen et al, 2011). In this analysis, a
component is also named a resting state network (RSN) as it
comprised a network including several areas of the brain and
the fMRI scan was obtained during resting state. The 39
components were considered the RSNs of interest. Figure 1
shows the spatial content of included RSNs.

Dynamic Functional Connectivity

In addition to spatial information, a set of time courses
characterize the temporal evolution of each RSN. The dFNC
data were obtained using the sliding-time-window-
correlation applied to RSN time courses (Louie and
Wilson, 2001). Temporal window size was 40 s aiming at a
fine resolution of temporal dynamics. Windowed correla-
tions totaled 741 for each sliding TR shift. The data were
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structured such that one complete set of 741 windowed
correlations represent the information of a single point in
time. For simplicity, each set of 741 correlations in each TR
shift will be named a window. Data from all subjects were
clustered using the k-means clustering algorithm (Lloyd,

1982) to estimate the set of dFNC states in the data. The
number of clusters was estimated to be 6 using the GIFT
software package (Rachakonda et al, 2007). Figure 2 displays
centroids for all six states where the difference in con-
nectivity patterns is evident.

Table 1 Subject Group Demographic Summary

CTR SMK DRN SAD MAR SAM MAD ALL Total

Size 51 80 250 47 13 17 51 25 534

Female % 35.3 46.3 39.6 25.5 23.1 29.4 33.3 16.0 36.50

Age

Min 18 19 19 21 18 19 24 21 18

Mean 34.5 34.8 33.4 34.0 28.8 29.8 31.9 29.2 33.2

Max 54 54 55 53 49 41 55 52 55

AUDIT N/A 0 8 8 0 0 8 8 0

Min

Mean N/A 2.8 17.8 15.3 4.5 3.1 17.2 15.7 11.0

Max N/A 7 39 32 7 6 33 32 39

FTQ 0.0 7.0 0.0 7.0 0.0 7.0 0.0 7.0 0.0

Min

Mean 0.0 9.0 0.6 9.0 0.8 9.6 0.6 8.2 4.7

Max 0.0 13.0 6.0 12.0 5.0 13.0 4.0 11.0 13.0

Marijuana 0.0 0.0 0.0 0.0 15.0 30.0 15.0 15.0 0.0

Min

Mean 0.0 0.2 0.3 0.5 34.2 54.0 36.5 42.2 21.0

Max 0.0 3.0 5.0 5.0 60.0 60.0 84.0 90.0 90.0

BDI N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Min

Mean N/A 5.3 7.9 8.4 4.8 6.9 7.7 10.6 7.4

Max N/A 25.0 41.0 27.0 11.0 20.0 22.0 32.0 41.0

BAI N/A 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Min

Mean N/A 4.8 8.1 7.3 7.0 5.7 6.6 9.2 7.0

Max N/A 24.0 42.0 53.0 23.0 23.0 26.0 28.0 53.0

ImpSS N/A 1.0 0.0 1.0 3.0 1.0 1.0 2.0 0.0

Min

Mean N/A 7.7 9.3 10.8 8.8 9.7 9.8 9.2 9.3

Max N/A 18.0 19.0 19.0 17.0 18.0 19.0 19.0 19.0

Income N/A 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Min

Mean N/A 2.9 2.9 2.8 2.6 2.6 2.4 2.0 2.6

Max N/A 7.0 7.0 7.0 7.0 6.0 7.0 7.0 7.0

Mean
Framewise displacement

ALL4CTR
ALL4DRN

1.29 1.70 1.57 1.76 1.96 1.46 1.52 2.2 13.46
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RESULTS

Substances Affecting the Occupancy Rates of dFNC
States

Subject-wise occupancy rates were determined by the
frequency with which each dFNC state appeared on each
subject. Occupancy rate differences for each of the eight
substance groups were then tested utilizing six one-way
ANOVAs. The ANOVA tests for state 2 (F= 2.49,
P= 0.0161) and state 4 (F= 2.47, P= 0.0170) were significant.
ANOVA tables are provided in Supplementary Material.
Figure 3 displays mean occupancy rates and post hoc results
from Fisher’s least significant difference (LSD) (Fisher,
1937). After detecting a significant ANOVA, LSD finds the
smallest significant difference and considers larger differ-
ences as significant (Williams and Abdi, 2010). The DRN
group showed larger occupancy than CTR and ALL groups
in state 4. The MAR group also showed larger occupancy
than the ALL group. In contrast, DRN and MAD groups had
lower occupancy than the CTR group in state 2. The SAM
group had larger occupancy rate than DRN. In both states,
MAR and DRN groups follow the similar tendency with high
occupancy in state 2 and low occupancy in state 3, but
because of its large variance the MAR group had no
significant differences with other groups in state 2.

A linear regression model was applied with the occupancy
rate as dependent variable (DV). Results from linear
regression models displayed in Table 2 show a significant
and negative slope between occupancy rates and AUDIT in
state 2, agreeing with the ANOVA post hoc analysis in
Figure 3. However, state 4 had no significant regression
coefficients of substance-related scores. There were no
significant coefficients for depression (BDI), anxiety (BAI),
and sensation seeking (ImpSS) on any of the six states. State
2 had significant relationships with sex and income, but
AUDIT had the larger effect size. The largest covariate in
state 4 was age with a very strong effect size, followed by
income as the second strongest covariate. Movement noise
on the z-axis was significant in state 4 and might have
contributed to the lack of effects related to substances.
The strongest result indicates that drinkers and comorbid

alcohol–cannabis users exhibit a reduced influence in state 2,
where connectivity among saliency, motor, and sensorial
processing is strong. Connectivity for the cannabis group
follows a similar trend, but the lack of significance may be
influenced by the differences in sample sizes. Nicotine and
comorbid nicotine–cannabis did not show an effect or a
trend in this occupancy rate analysis.

Figure 1 Spatial content of the resting state networks (RSNs) obtained from group independent component analysis (gICA). The gICA is able to
decompose the fMRI data into several RSNs. Each RSN is a signal source with separate spatial and temporal information. The spatial part of the RSN delimits a
brain region of interest in the study. The different colors in the picture aid differentiating RSNs from one another. It is common in gICA to have some RSNs
composed of more than one brain area. In some cases, one RSN includes left and right content of the same brain area. RSNs were grouped according to their
functional relevance in subcortical (SBC), cerebellum (CER), auditory (AUD), sensorimotor (SEN), visual (VIS), salience (SAL), default mode network (DMN),
executive control network (ECN), and precuneus (PRE). MNI coordinates for the peaks of all RSNs and corresponding groups are available as Supplementary
Material.
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Figure 2 Dynamic functional network connectivity (dFNC) assumes that whole brain connectivity sequentially iterates through a finite set of connectivity
patterns also known as dFNC states. In practice, the states might present some differences according to the subject and the particular moment in time. The
picture displays mean connectivity matrices, called centroids, obtained from all subjects and moments in time with the same state. Anticorrelation between
DMN and other RSNs characterizes state 1. Centroid 2 features high correlation among networks recruited outside resting state. Centroids 3 and 4 are similar
and depict high correlation within most RSN groups, but low correlation between RSN groups. Centroid 3 includes a particular anticorrelation between
salience (SAL) and DMN. Centroid 5 is similar to centroid 1 except for a low correlation pattern of executive control RSNs. Finally, centroid 6 presents a
particular pattern of positive correlations that is not observed in the previous centroids.
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Substance Effects in dFNC Strength

A multivariate analysis of variance (MANOVA) (Warne,
2014) was used in each state to determine group differences
using correlations from all 741 (39 × 38/2) RSN pairs as DVs.
Windows belonging to the same dFNC state were averaged
for each subject to represent the subject on a particular state.
Within a dFNC state, the 741 average values of each subject
entered MANOVA as DVs. MANOVA results were all
significant (Po1e–94) indicating at least one group differ-
ence. Specifics about the MANOVA results are included in
the Supplementary Material. The post hoc analyses were
performed using linear discriminant analysis (LDA). LDA is
a multivariate method, a generalization of Fisher’s linear
discriminant (Iatan, 2010), used to find linear combinations
of DVs that best separate the groups. In our context, LDA
delivers a finite set of vectors (termed canonical vectors) with
subject corresponding values. For ease of illustration, we only
utilized the first two canonical vectors for the scatter plots
displayed in Figure 4 to show group separation in a two-
dimensional space. The scatter plot also includes a vector
indicating the direction of increasing connectivity strength.
Connectivity strength is a global measure of connectivity
obtained by averaging all available correlations (Lynall et al,
2010). The global characteristic of connectivity strength is
appropriate for this analysis given that LDA is a linear
combination of connectivity values spanning the whole
brain. The connectivity strength vector was obtained by
averaging the 741 dFNCs on each state and calculating the
projection to the corresponding canonical vectors. In this
analysis, only the vector direction is important and points to
increasing dFNC connectivity strength. Two dimension
scatter plots illustrate subject group segregation where all
eight groups are almost perfectly separated. However, this
visualization does not show dFNC information of all seven

dimensions. Figure 4h exhibits the distribution of subject
groups along the projection of the connectivity strength
vector in seven dimensions. The way this projection was
calculated is exemplified in Figure 4g. Figure 4h allows for
the visualization of the relationship between subject group
and connectivity strength. The results illustrate the possibi-
lity of discriminating between the eight groups by means of a
multivariate analysis and performing specific linear combi-
nations of dFNC values. In state 1, the MAR and ALL groups
show larger connectivity strength than the rest, but the SAM
group exhibits a lower value. In states 2, 3, and 5, the MAR
group has noticeably larger connectivity strength than the
others. In state 2, CTR and SAM groups have the second
strongest connectivity strength. Besides the MAR group, the
other subject groups do not differentiate along the con-
nectivity strength axis. State 4 exhibits a SAM group with
larger connectivity strength than the other groups. State 5
has the most confounded subject groups of all states. State 6
shows low connectivity strength in the SAM and DRN
groups; the CTR group has higher connectivity strength than
the other groups.
Because canonical vectors are linear combinations of the

dFNCs, it is difficult to see changes in connectivity for single
RSN pairs. Specific connectivity effects were analyzed using
ANOVAs on dFNC values (one ANOVA for each one of the
741 dFNCs) seeking significant group differences (Po0.05)
and correcting using false discovery rate (FDR). Finally, a
linear regression model was applied to the subset of 741
connectivity values with significant ANOVA. The linear
model assumed the connectivity between a particular RSN
pair as DV. The significant ANOVA results are displayed in
Figure 5 and regression model results are presented in
Table 3. Movement covariates based on the mean frame-wise
displacement of each coordinate were included to correct

Figure 3 The post hoc analysis for cluster occupancy rates on each state. A dFNC analysis assumes different connectivity patterns that sequentially change
through time. The ratio of the number of times a state appears in a subject’s brain over the total scanning time is known as the occupancy rate. Some subjects
might have higher occupancy rates in one state indicating their preference for that connectivity pattern. The figure displays differences in state preference,
assessed as occupancy rates, based on substance use groups. Bars display the means of each substance group. The dotted line indicates significant difference
based on ANOVA tests and least significant different post hoc.
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and diminish possible movement variance in the analysis.
Only the result from state 1 had a significant noise related to
the y-axis movement, but the inclusion of this covariate
reduced the influence of movement. The other results in
Table 3 did not exhibit a significant movement variance.
Group results for states 1 and 2 were consistent with a
reduction of dFNC because of alcohol. In both states, the
DRN group presented a lower dFNC mean with respect to
CTR and SMK groups. At the same time, both states present
a significant negative slope with AUDIT increasing the
evidence that alcohol use is related to this diminished
connectivity. The result from state 1 feature connectivity
between the left inferior frontal gyrus (L. IFG) and the right
postcentral gyrus. The particularity of this result is a
significant relationship with cannabis consumption. It might
explain in part the increased mean dFNC in the ALL group
and the difference between DRN and MAD groups. The
result from state 2 include the connectivity between a RSN
comprising right fusiform and lingual giri, and a RSN with
supplementary motor area (SMA) content. The relationship
between CTR, DRN, and SMK groups is the same as in
state 1. The difference can be seen in a lack of a significant
marijuana link and the ALL group exhibits a decreased
dFNC. For the ALL group, alcohol use seems to lead the
direction of the effect in state 2 as opposed to the strong
influence of marijuana use seen in state 1.
Four ANOVAs were significant in state 4 involving the

connectivity between dorsal striatum and sensorimotor
regions. Groups of nicotine use (SMK, SAD, SAM, and
ALL) had no significant difference in dFNC for the pair
putamen and SMA. With some few exceptions, these four
nicotinic groups exhibited a lower dFNC than the non-
nicotine groups including CTR. The regression analysis
reveals a strong effect (22.9% of variance explained) of
reduced connectivity with increased FTQ. These results
suggest a strong connectivity reduction between putamen
and SMA linked to nicotine use. An almost identical pattern
can be observed for the RSN pair L.Putamen/Caudate and L.
Postcentral-1-3b where the effect size for FTQ is also
significant (10% of variance explained). Although similar
in trend and anatomical regions, the other two RSN pairs
show a significant link with nicotine use. However, these
results exhibited a lack of group difference between CTR and
SMK groups. Except for a significant link to AUDIT in the
pair L.Putamen/Caudate vs L.Postcentral-1, no other covari-
ate had a significant effect on dFNC. The dFNC in state 4
seems to be mainly influenced by nicotine use.

DISCUSSION

Drawing from the poly-substance characteristics of the
subjects considered in this study, one important objective
of this work was to detect dFNC differences linked to
combinations of the three commonly used substances. In
general, the data were rich enough to allow for a match of
substance use and dFNC characteristics acquired through
appropriate linear combinations. These linear combinations
do not point to a particular gray matter region, but represent
the aggregated contribution of brain areas spanning the
whole brain. Figure 4a–f illustrates 2 out of the 7 available
data dimensions with significant information aboutT
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differences in the 741 dFNC measures. These scatter plots
show that each substance or their combined use has separate
and identifiable effects in the brain. The difficulty in
interpreting MANOVA results comes from its multivariate
and higher dimensional features. As an outcome of the
aggregation of connectivity through the whole brain, it is
reasonable to compare the results with a global measure of
connectivity. Figure 4h presents an interpretable visualiza-
tion of the results based on global connectivity strength
measure. Connectivity differences could be seen at the global

level that we discuss in the following paragraphs along with
more localized effects.
The overall effect of alcohol is a reduction of dFNC,

especially among motor and sensorial areas. Figure 3 shows
evidence that alcohol drinkers avert state 2, where there is a
strong connectivity among sensorimotor, salience, and
precuneus brain areas. The lack of preference for state 2 is
confirmed by the negative regression coefficient that was
found significant for the occupancy rate of state 2 in Table 2.
The connectivity pattern in state 2 is in line with the
hypothesis of an extrospective mind state within the resting

Figure 4 The post hoc analyses of MANOVAs performed on all states indicate the existence of significant group differences. The post hoc analysis in this
figure corresponds to a linear discriminant analysis (LDA). LDA finds linear combinations of connectivity across the whole brain that best separate the sample
groups. Figure 4a–f utilizes the first two canonical vectors, outcomes of LDA linear combinations, to illustrate the ability to separate sample groups. Axes x and
y represent the first and second canonical vectors respectively. To better understand the data, we calculated the representative connectivity strength vector
(indicating the direction of global increment of connectivity, ie, connectivity increment of the whole brain) on each state for the first seven canonical vectors.
The coordinates of each subject were then projected over the connectivity strength vector on each state. Figure 4g depicts the concept of coordinate
projection onto the connectivity strength vector. ANOVAs on the projection value as response were significant for all state (Po1.2 × 10− 31) confirming
observed group differences. Figure 4h displays a summary of substance group projections. The marker is positioned at the mean value. The line crossing the
marker ranges from the minimum to the maximum projected coordinate.
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state, providing readiness in case attention to outside stimuli
is necessary (Fransson, 2005). In contrast, there is an inflated
preference for state 4, where the mentioned brain areas are
weakly connected. Not only the dFNC state preference is
different for drinkers, but also connectivity strength.
Figure 4h presents additional connectivity reduction in most
states including states 2 and 4. In addition to whole brain
connectivity data, univariate analyses identified reduced
dFNC in drinkers between visual and motor areas, agreeing
with the multivariate outcomes. Linear model results in this
study provide previously missing evidence (Vergara et al,
2017a) of a significant link between alcohol effects in
functional connectivity with alcohol use measures; specifi-
cally, the AUDIT score. This set of consistent results
observed in dFNC also agrees with former studies of static
functional connectivity. A previous study found a reduction
of static functional connectivity primarily among the insula,
precuneus, sensorimotor, and visual areas, but an increase on
the putamen after testing for group differences against
nondrinkers (Vergara et al, 2017a). These outcomes support
both the ‘disconnection syndrome’ (Dupuy and Chanraud,
2016) and the reduced interoception effect (Çöl et al, 2016)
related to alcohol use. Alcohol-related functional disconnec-
tion has been reported by several studies (Weiland et al,
2014) as associated with drinking, abstinence, and relapse
(Camchong et al, 2013a, b) and loss of network efficiency in
the brain (Sjoerds et al, 2017). This and the previously
mentioned studies only presented evidence of functional
disconnection, but structural studies have also indicated
decreased white matter integrity (Jansen et al, 2015; Kril et al,
1997; Yeh et al, 2009); this helps explain the overall extent of
the disconnection syndrome. One important point is that
observed functional disconnection is more prominent in
state 2, where salient brain areas in the insula (see the insula
in Figure 1 and state 2 in Figure 2) are strongly connected
with other brain regions. The insula is actively involved in
interoception because it is a structure that processes the
physiological condition of the rest of the body (Craig, 2003).
The results are in accordance with the idea of a reduced
interoception because of the disconnection produced by
alcohol use. Evidence of reduced iteroception awareness
related to alcohol use has been previously presented (Çöl

et al, 2016) by means of a heartbeat perception performance
method. In addition to alcohol, our data suggest that
marijuana consumption may produce aberrant interoception
patterns because of an increased occupancy rate in state 4
(see Figure 3) where the insula is weakly connected to the
rest of the brain. Connectivity strength was also reduced in
marijuana subjects within state 4 (see Figure 4); however,
state 2 presents the opposite effect with different outcome
than alcohol drinkers. It has been theorized that aberrant
interoception is an effect that belongs to all addiction in
general (Verdejo-Garcia et al, 2012). In this respect, our data
suggest that alcohol may produce one of the largest aberrant
interoception among the substances of abuse. We can turn
our attention to state 1, where univariate analysis found a
decrease in dFNC between a frontal area of the ECN and
postcentral gyrus; both task-positive networks (TPNs). TPNs
are brain networks elicited to perform demanding tasks (Fox
et al, 2005). Aberrant connectivity in the ECN has been
suggested as a contributing factor in sustaining alcohol
addiction (Weiland et al, 2014). Group differences found in
our analyses agree in part with predictions of the network
model of addiction where resting state connectivity among
TPNs and between salience and TPNs are reduced after
substance use (Sutherland et al, 2012). In summary, alcohol
use produces a general resting state functional disconnection
that is harsh on TPNs (including sensorimotor and executive
control areas) and the insula, a region important for
interoceptive functions.
Concurrent nicotine and alcohol consumption did not

have an effect in occupancy rates. The SAD group exhibited
similar connectivity strength as the DRN group in states 2
and 4. There was no similar trend between SMK and SAD
groups. In states 1 and 3, the two groups had connectivity
strength similar to controls indicating the absence of an
important effect. The similarity of effect between populations
that drink and those that concurrently smoke and drink has
been observed before in studying static FNC (Vergara et al,
2017a). In that static FNC study, there was a sparing of high
visual areas in SAD subjects. A similar outcome was
observed in Figure 5, where the connectivity between motor
and a high visual processing area was reduced in drinkers,
but was unaffected in SAD subjects. This outcome could be

Figure 5 Histogram summarizing significant ANOVAs. An ANOVA was performed for each of the 741 available correlations. Only six group differences
were found after false discovery rate correction on ANOVAs P-values. The Fisher r-to-z transformation was applied to all correlation values and the color scale
was restricted to the range [− 0.5 to 0.5]. Pairwise group comparisons are indicated in black and white. The reference group on each block in marked as ‘ref.’
Lower connectivity in the alcohol DRN group compared with controls (CTR) was found in states 1 and 2. Lower connectivity in nicotine smokers (SMK),
smoke-and-drink (SAD), and all substances (ALL) groups compared with the CTR group characterized state 4.
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Table 3 Results from Linear Regression Models for dFNC on Each State

State 1 2 4 4 4 4

RSN Pair L.IFG-44 R.Fusiform/Lingual SMA R.Postcentral-1-3b L.Postcentral-1-3b L.Postcentral-1

R.Postcentral-1 SMA-6 Putamen L.Putamen/Caudate L.Putamen/Caudate L.Putamen/Caudate

RSN No. β P % Var β P % Var β P % Var β P % Var β P % Var β P % Var

Constant 3.4E− 01 0.01 0.0% 6.5E− 01 2.4E− 06 0.0% 4.5E− 02 0.75 0.0% − 2.4E− 01 0.14 0.0% − 1.9E− 01 0.32 0.0% 8.1E− 02 0.63 0.0%

Sex − 4.3E− 02 0.40 0.4% 3.3E− 02 0.54 0.3% 4.0E− 02 0.44 0.5% 1.6E− 02 0.79 0.1% 4.5E− 02 0.52 0.4% 6.8E− 03 0.91 0.0%

Age − 4.7E− 03 0.11 1.3% − 5.1E− 03 0.08 2.2% 1.3E− 03 0.67 0.2% 5.0E− 03 0.16 2.3% 5.9E− 03 0.15 2.7% 1.4E− 03 0.70 0.2%

Marijuana
60TLFB

2.5E− 03 3.6E-02 2.0% 2.4E− 04 0.86 0.0% 5.3E− 04 0.73 0.1% 3.5E− 03 0.05 3.6% 2.5E− 03 0.22 1.5% 2.4E− 03 0.19 1.5%

FTQ − 7.8E− 04 0.89 0.0% 1.2E− 02 0.06 3.1% − 2.9E− 02 3.0E− 05 22.9% − 2.0E− 02 1.1E− 02 9.3% − 2.4E− 02 9.5E− 03 10.1% − 2.5E− 02 2.3E− 03 13.1%

AUDIT − 8.1E− 03 4.7E-02 2.8% − 7.9E− 03 4.3E− 02 3.9% − 2.2E− 03 0.58 0.4% -5.7E− 03 0.21 2.3% − 5.2E− 03 0.31 1.6% − 9.8E− 03 3.5E− 02 6.2%

BDI 1.9E− 03 0.68 0.1% − 4.8E− 03 0.20 1.2% 6.6E− 04 0.86 0.0% 4.3E− 03 0.34 1.1% − 4.8E− 04 0.92 0.0% 6.5E− 04 0.89 0.0%

ImpSS 2.0E− 03 0.69 0.1% − 8.3E− 03 0.14 1.6% − 1.3E− 03 0.82 0.1% − 5.5E− 04 0.93 0.0% 2.9E− 03 0.70 0.2% 4.4E− 03 0.51 0.5%

BAI 2.4E− 03 0.59 0.2% 1.7E− 04 0.56 0.2% 3.2E− 04 0.23 1.2% 1.9E− 04 0.52 0.4% 2.3E− 04 0.50 0.4% − 4.2E− 05 0.89 0.0%

Income 1.3E− 02 0.33 0.4% 3.2E− 02 2.0E− 02 3.5% 1.2E− 02 0.44 0.5% − 1.1E− 03 0.95 0.0% 1.4E− 02 0.50 0.4% 6.6E− 03 0.73 0.1%

x 7.7E− 04 0.59 0.3% − 6.7E− 05 0.96 0.0% 7.8E− 04 0.59 0.8% 2.5E− 04 0.88 0.1% 8.5E− 04 0.66 0.7% 1.9E− 03 0.26 3.9%

y 4.0E− 03 1.7E-03 7.9% − 1.2E− 03 0.31 1.3% − 1.2E− 03 0.32 1.6% − 2.6E− 03 0.05 6.6% − 2.3E− 03 0.15 3.9% − 2.2E− 03 0.11 4.4%

z − 3.9E− 04 0.61 0.2% − 7.9E− 07 1.00 0.0% − 9.0E− 04 0.17 2.8% − 1.8E− 04 0.81 0.1% − 7.6E− 04 0.38 1.4% − 1.2E− 03 0.12 3.9%

x-rot 2.4E− 04 0.66 0.1% − 1.6E− 04 0.73 0.1% 8.0E− 05 0.88 0.0% 1.2E− 03 0.05 7.2% 1.1E− 03 0.11 5.2% 1.2E− 03 0.06 6.5%

y-rot − 9.5E− 04 0.24 0.7% 1.0E− 03 0.23 1.2% − 2.1E− 06 1.00 0.0% 4.0E− 04 0.62 0.4% -3.7E− 04 0.68 0.2% 4.5E− 04 0.59 0.4%

z-rot − 4.8E− 04 0.68 0.2% − 6.5E− 04 0.57 0.4% − 9.0E− 04 0.49 0.9% 4.8E− 04 0.75 0.2% 3.9E− 04 0.82 0.1% 1.5E− 04 0.93 0.0%

Regression models were only assessed for FDR significant ANOVAs. Shaded regions indicate significant results (Po0.05 uncorrected).
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related to the activation enhancement of high visual areas
produced by nicotine (Ghatan et al, 1998; Lawrence et al,
2002). The effect of nicotine on alcohol drinkers might have
diminished dysfunctional connectivity because of alcohol,
but future research is needed to verify the existence of this
effect.
Nicotine outcomes were fewer overall, but with some

relatively large effect sizes. Although no group differences in
occupancy rate were found in relation to the SMK group,
significant associations with FTQ were observed in the linear
model. Higher occupancy rates in state 5 were linked to
larger FTQ values. Lower occupancy rates in state 6 were
associated with larger FTQ. The main difference between
these two states is the higher connectivity of the ECN and the
DMN in state 6 as compared with state 5, suggesting that
nicotine reduces connectivity of the ECN and the DMN.
Connectivity strength results in Figure 4 show a tendency for
connectivity reduction in states 2, 5, and 6 when comparing
SMK and CTR groups, favoring a reduced connectivity
because of nicotine use. However, connectivity strength has a
contrasting picture of increased connectivity in state 3 and
no difference with controls in states 1 and 4. These
contrasting results are not completely unexpected as nicotine
has been found to produce both increased and decreased
connectivity in some brain areas, including the frontoparietal
network and the DMN (Pariyadath et al, 2014). Univariate
analysis produced a more conclusive set of outcomes.
ANOVA results in Figure 5 show a significant dFNC
decrease in smokers compared with controls between
sensorimotor and dorsal striatum areas in state 4. Reduced
dFNC in nicotine users is further verified by significant links
between FTQ and striatal-sensorimotor connectivity dis-
played in Table 3 with large effect sizes characterized by
percentages of variance explained between 13% and 22%. To
the best knowledge of the authors, this is one of the few times
a strong effect of resting state functional connectivity has
been observed in the dorsal striatum linked to nicotine. Static
connectivity analysis using seed-based methods found that
smokers during an abstinent period of 24 h exhibit decreased
connectivity between dorsal striatum and cortical regions
that include the supplementary motor area (Sweitzer et al,
2016). Although the ventral striatum is more frequently
associated with nicotine addiction because of its role in the
dopamine pathway (Brody et al, 2004; Okita et al, 2016), the
dorsal striatum is thought to become a more important
player as drug seeking transitions from voluntary to habitual
behavior (Everitt and Robbins, 2005). This transition has
been suggested to be present in abstinent nicotine smokers as
an underlying mechanism that suppresses some automated
habitual conduct in favor of diverting resources to craving
and nicotine seeking behavior (Sweitzer et al, 2016; Tiffany
and Conklin, 2000). There is also evidence that the dorsal,
and not the ventral, striatum suffer morphological changes
(volume and surface area) associated with nicotine craving
(Janes et al, 2015). Our data and the previously mentioned
studies support the existence of structural and functional
connectivity changes in the dorsal striatum (putamen and
caudate) linked to nicotine use and dependence.
The connectivity strength of marijuana subjects was larger

than controls in states 1, 2, 3, and 5, but lower with a smaller
magnitude in the other two states as displayed in Figure 4h.
This result indicates that marijuana induces a stronger

increment of connectivity through the brain, in selected
dFNC states, than decrements. The effects were observed in a
whole brain connectivity summary, but were not observable
when selecting specific brain areas. Figure 5 illustrates this
observation in the boxes comparing the CTR group with the
rest. It can be argued that two factors contributed to the
small number of marijuana results: (1) the large number of
comparisons that were corrected and (2) the small number of
marijuana subjects. Nevertheless, multivariate group results
were observed as they are based on the linear combination of
contributions from many group differences that were
excluded if applying statistical multicomparison correction.
Increased functional connectivity in cannabis users com-
pared with controls has been previously reported in areas
including the orbitofrontal cortex (Filbey et al, 2014);
precentral, middle frontal, superior frontal, cingulate,
inferior frontal, and fusiform giri (Cheng et al, 2014); and
posterior cingulate and insula (Pujol et al, 2014). These
observations of functional connectivity increments, including
that in our data, are not expressions of beneficial effects.
Structural studies found a series of axonal impairment in the
hippocampus (fornix), splenium, commissural fibers
(Zalesky et al, 2012), and morphological changes in the
amygdala (Cousijn et al, 2012), cerebellum (Cousijn et al,
2012; Medina et al, 2010), and prefrontal cortex (Medina
et al, 2009). One hypothesis that can explain why increased
functional connectivity might point to an actual dysfunction
suggests interference of some brain network in the normal
function of others (Sutherland et al, 2012). This idea has
been used to explain increased connectivity in key areas of
the default mode network as a detrimental effect on the brain
(Pujol et al, 2014).
As previously explained, both marijuana and alcohol

consumptions are linked to changes of structural connectiv-
ity (Jansen et al, 2015; Zalesky et al, 2012), but affect
functional connectivity in opposite directions as alcohol
decreases (Camchong et al, 2013b; Vergara et al, 2017a;
Weiland et al, 2014) and marijuana increases (Cheng et al,
2014; Filbey et al, 2014; Pujol et al, 2014) overall connectivity.
Thinking in an additive way, the effect of concurrent use of
these substances may subtract each other and this trend
should be observable in the MAD sample group. Connectiv-
ity strength measures in Figure 4h support this view, giving
the trend of the MAD group to be closer to controls (CTR
group) in states 2 and 5, where the MAR group has increased
but the DRN group decreased connectivity. Univariate
ANOVA results in Figure 5 show a MAD group with higher
connectivity than the DRN group in state 1, suggesting that
alcohol reduced connectivity between postcentral and
inferior frontal gyrus, but mixed alcohol and marijuana
diminished the effect of alcohol. A similar trend in higher
connectivity in MAD vs DRN groups is observed in state 4.
Increased connectivity in MAD compared with DRN groups
could in part be explained by reported increments of
structural connectivity in the prefrontal cortex linked to
marijuana use (Filbey et al, 2014). More evidence can be
found comparing the brain of adolescents, where subjects
that binge drink and consume marijuana exhibited less white
matter alterations than those who only consumed alcohol
(Jacobus et al, 2009). Even though a subtractive effect is
plausible, the consequences do not translate into beneficial
outcomes. Comorbid alcohol and marijuana consumption
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does have a toll in neurocognitive abilities including verbal
learning, memory, attention, processing speed, visuospatial
functioning, and cognitive control (Squeglia and Gray, 2016).
The opposite trend between alcohol and cannabis is not an
indication that detrimental neurocognitive effects will
diminish because of concurrent use.
The results obtained for combined nicotine and marijuana

show connectivity effects that contrast with single substance
use. Connectivity strength in state 4 is dramatically increased
compared with all of the other samples groups. In states 1
and 6, the connectivity strength of the SAM group is lower
than all other groups. These connectivity differences do not
follow an obvious trend, nor an additive effect, when
compared with the MAR and SMK groups. The chemistry
of combined marijuana nicotine use is characterized by an
increase of nicotinic acetylcholine receptor (nAChR) avail-
ability in the prefrontal cortex and the thalamus as compared
with single nicotine use (Brody et al, 2016). In the same
work, this interaction thought to occur at the cell molecular
level was also found in mixed nicotine caffeine consumption.
Availability of nAChRs modulate whole brain connectivity
measures such as global network efficiency that measures the
efficiency of information transfer through the brain (Wylie
et al, 2012). In similar fashion, chemical interactions of
nicotine and marijuana may have potentiated the variety of
global connectivity strength effects that are seen in Figure 4h.
These outcomes must be interpreted in the context of whole
brain analysis and cannot be used to describe more specific
effects of each substance. Univariate ANOVA outcomes of
state 4 (see Figure 5) are compatible with a difference;
specifically, an increment of connectivity in comorbid
marijuana and nicotine use as compared with single
substance use. However, the SAM group did not show
differences with controls, indicating that observed combined
vs single use effects are not simple to explain.
Up to this point, we can observe that some states are more

affected by certain substances. For example, alcohol has a
consistently strong influence in state 2. Marijuana produced
a large increase of connectivity strength in states 1, 2, and 3.
Nicotine produced a large effect size between dorsal striatum
and sensorimotor areas in state 4. We can observe that the
ALL group influenced by all three substances might follow
the trend of one of the three substances on different states. In
state 1, ALL and MAR groups had a similar connectivity
strength. This increment in the ALL could also be seen in the
univariate results for state 1 (shown in Figure 5) and is an
opposite effect to the decrease connectivity in the DRN
group in that state. If the interaction of marijuana and
alcohol can be thought of as additive, then marijuana could
have a stronger influence than alcohol in that state. Both
multivariate and univariate results agree that alcohol is the
stronger influence in state 2. In Figure 4h, the ALL group
may not have achieved the same decrement of connectivity
strength as that seen with the SAD and DRN groups because
of the influence of marijuana. It is noteworthy that the MAR
group had a very strong increment of connectivity strength.
Note that ALL and MAD groups showed similar connectivity
strength. The univariate results for state 2 in Figure 5 are
consistent with a decrement of connectivity in the DRN and
ALL groups, suggesting that alcohol was the most influen-
cing substance. With respect to nicotine, only the univariate
results show a consistent similarity between ALL and SMK

groups in state 4, suggesting that nicotine was the most
influential substance. The effect was strong in specific areas
of the brain, dorsal striatum, and sensorimotor areas, but was
not observed when analyzing the connectivity strength. We
observed effects that were more focused than global effects
related to nicotine.
An important limitation of this study was the disparity on

the number of samples, where there is a relatively large
number of alcohol users, but a low number of marijuana
users. Although the low number of marijuana users allowed
the observation of effects using MANOVA, the low statistical
power was more evident when analyzing single dFNCs.
Many univariate results with marijuana effects were excluded
after multicomparison correction, but the P-values were close
to being significant after FDR. Unfortunately, subjects
suitable for single marijuana consumption are difficult to
find and, along with the need for correcting over a large
amount of comparisons, causes a considerable limitation of
statistical power. Nevertheless, multivariate analysis picked
up strong signals from whole brain marijuana effects because
it combined the available information. The MAR group
shows similar reduction of occupancy rate with the DRN and
MAD subjects in state 2, but this reduction did not achieve
significance mainly because of the small number of subjects
in MAR. However, the observed trend is compatible among
these three sample groups, indicating that alcohol and
cannabis might have the same effects on the occupancy rate
of state 2. In state 4, the MAR group exhibits an even higher
mean occupancy than DRN (group that differ from CTR),
but high variability of dFNC from MAR samples decremen-
ted detection power. The second important limitation was
the lack of covariate measures for the CTR group. Although
AUDIT was missing from this group, several studies indicate
that AUDIT and DSM-IV have similar specificity (Dawson
et al, 2012; Foxcroft et al, 2015), providing evidence that
subjects in the CTR group were correctly classified. However,
the same cannot be inferred for the other important
measures of BID, BAI, ImpSS, and Income. For this reason,
linear correlation analysis was limited to the substance user.
Third, the small number of single dFNC findings likely
reflects only the strongest effects. Other existing effects, such
as those observed by hypotheses-driven techniques
(Chanraud et al, 2011; Janes et al, 2012), may be missed.
The small number within the MAR group plays a role in this
limitation.
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